Prairie Climate Centre

Introduction to the Prairie Climate Centre: Implications for Planning June 21, 2016 – Rural Development Institute

Acknowledgements

THE UNIVERSITY OF WINNIPEG

Interactive Atlas

Days -30° or Colder

This is the type of image that will be on our website.

Draped over scalable Google Earth images.

Major centres will be clickable, to obtain data details.

Recent Past Near Future Far Future

Data Source: Pacific Climate Impacts Consortium (PCIC), University of Victoria, (2014). Statistically Downscaled Climate Scenarios. Downloaded from pacificclimate.org.

Days +30° or Warmer

Statistically Downscaled Climate Impects Constitutin (Cicc), Oniversity of Victoria, (2024).

Frost-Free Period

Frost-Free Period A Much Longer Growing Season

Recent Past

Frost-Free Period A Much Longer Growing Season

Recent Past Near Future Far Future

Data Source: Pacific Climate Impacts Consortium (PCIC), University of Victoria, (2014). Statistically Downscaled Climate Scenarios. Downloaded from pacificclimate.org.

2051-2080 **Δ**T: RCP8.5

Spring Precipitation

Statistically Downscaled Climate Induces Constituting (Cic), on Vecond, (2024).

Summer Precipitation

Near Future Far Future Data Source: Pacific Climate Impacts Consortium (PCIC), University of Victoria, (2014). Statistically Downscaled Climate Scenarios. Downloaded from pacificclimate.org.

2051-2080 **Δ**PPT: RCP8.5

An Example of Climate Analogues

Winnipeg Winter Climate Analogues

AdaptWest data was used to identify whose climates we will have in the future, using seasonal temperature and precipitation projections.

Winnipeg Winter Climate Analogues

Similarity index:

- Mean temperature within 1 ° C
- Total precipitation within 20%

Winnipeg Winter Climate Analogues

Winnipeg Summer Climate Analogues

Winnipeg Summer Climate Analogues

Winnipeg Summer Climate Analogues

Role of the Prairie Climate Centre

- Inform policy and develop solutions
- Inspire adaptation and mitigation
- Make climate change data accessible to all
- Build decision making tools
- Produce peer-reviewed research results
- Foster Prairie-wide collaborations and partnerships
- Conduct workshops and training sessions
- Educate the public

- Shifting seasons
- Shorter, warmer winters
- Longer, hotter summers
- More precipitation in winter, spring, fall
- Less precipitation in summer
- More intense precipitation events
- More severe weather
- More heat waves
- A less stable climate

Risks

- Floods and droughts
- Water resource management
- Human health
- Crop failure
- Invasive species
- Forest fires
- Winter roads
- Infrastructure and building codes
- Disaster management and response
- Summer energy demand

Tailor-made Reports

L = Low Projection (10th Percentile) M = Mean Projection H = High Projection (90th Percentile)

Tai	lor-m	lade	Rep	orts

Winnipeg

High Carbon Emissions (RCP8.5)

Climate Variable	Season	1981-2010 (Baseline)		2021-2050 M Projections	=	2021-2050 +/-		2051-2080 M Projections	=	2051-2080 +/-
Days ≥ 30 °C	Annual	11.0 days	19.0 days	25.6 days	36.0 days	+14.6 days	34.0 days	46.4 days	60.0 days	+35.4 days
Nights ≥ 20 °C	Annual	1.0 days	2.0 days	5.1 days	9.0 days	+4.1 days	10.0 days	15.8 days	22.0 days	+14.8 days
Days ≤ -30 °C	Annual	8.2 days	1.0 days	2.9 days	5.0 days	-5.3 days	0.0 days	0.7 days	2.0 days	-7.5 days
Last Spring Frost	-	May-19	May-02	May-11	May-20	-8 days	Арг-24	May-02	May-11	-17 days
Frost-Free Period	Annual	128.4 days	128.0 days	145.8 days	162.0 days	+17.4 days	147.0 days	161.4 days	177.0 days	+33.1 days
First Fall Frost	-	Sep-24	Sep-23	Oct-04	Oct-19	+9 days	Oct-02	Oct-10	Oct-22	+16 days
Frost Period	Annual	211.2 days	150.0 days	165.2 days	178.0 days	-45.9 days	145.0 days	157.7 days	174.0 days	-53.5 days
Frost Days	Annual	186.2 days	157.0 days	167.0 days	179.0 days	-19.2 days	134.0 days	148.2 days	159.0 days	-38.0 days
Icing Days	Annual	117.8 days	92.0 days	104.2 days	115.0 days	-13.6 days	71.0 days	86.7 days	98.0 days	-31.1 days
Freeze-Thaw Cycles	Annual	58.7 cycles	45.0 cycles	54.1 cycles	61.0 cycles	-4.6 cycles	46.0 cycles	53.1 cycles	58.0 cycles	-5.6 cycles
5 °C Degree Days	Annual	1826.1	2086.9	2188.9	2314.7	+362.9	2402.5	2601.5	2807.6	+775.4
10 °C Degree Days	Annual	1015.7	1225.9	1301.6	1401.8	+285.9	1490.1	1640.7	1823.2	+624.9
16 °C Degree Days	Annual	325.6	453.3	506.1	563.1	+180.5	641.9	748.8	881.4	+423.2
Max 1-day Precip	Annual	67.0 mm	54.7 mm	75.3 mm	99.2 mm	+12.5 %	50.9 mm	77.4 mm	108.6 mm	+15.6 %
Max 3-day Precip	Annual	139.9 mm	118.2 mm	160.4 mm	198.4 mm	+14.6 %	102.8 mm	168.3 mm	226.8 mm	+20.3 %
PET	Annual	632.2 mm	658.7 mm	672.3 mm	684.1 mm	+6.3 %	689.1 mm	714.1 mm	737.1 mm	+12.9 %
P:PET Ratio	Annual	0.83	0.76	0.82	0.88	-0.01	0.74	0.79	0.83	-0.04

O Prairie

From Risk to Resilience

Climate Centre

Water Infrastructure

POLICY FORUM on SCIENCE VOL319 2008.02.01

CLIMATE CHANGE

Stationarity Is Dead: Whither Water Management?

P.C.D. Milly, ¹* Julio Betancourt,² Malin Falkenmark,³ Robert M. Hirsch, ⁴ZbigniewW. Kundzewicz,⁵ Demis P. Lettenmaier,⁶ Ronald J. Stouffer⁷

¹U.S. Geological Survey (USGS), e/o National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA. ²USGS, Tucson, AZ 85745, USA. ³StockholmInternational Water Institute, SE 11151 Stockholm, Sweden. ⁴USGS, Reston, VA 20192, USA. ⁵Research Centre for Agriculture and Forest Environment, Polish Academy of Sciences, Poznan', Poland, and Potsdam Institute for Climate Impact Research, Potsdam, Germany. ⁴University of Washington, Seattle, WA 98195, USA. ⁷NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA.

*Author for correspondence. E-mail: cmilly@usgs.gov

Climate change undermines a basic assumption that historically has facilitated management of water supplies, demands, and risks

Climate, Water and Infrastructure

Agricultural Water Management

Agricultural Water Management

Green Infrastructure: Investment case for water harvesting under climate change

Agricultural Water Management

The future: Combining flood protection, drought resiliency and water quality

- Stores spring runoff water
- Has resulted in increased production in surrounding farmland
- Reduced peak flooding and reduction in downstream water flow

The Investment Case: Public + Private Benefits Back flood dams

• Net benefits = EGS benefits – annualized costs

					Mon	etized
Variable	Units	Мо	netary Value	Impact (in units)	Impa	act
Benefits						
New wetland habitat	Acres of wetland	\$	82.13	80.00	\$	6,570
Cattails produced	Tonnes of cattails (total biomass)	\$	16.59	388.50	\$	6,445
Carbon credits	Tonnes of carbon		\$15.00	407.93	\$	6,119
Avoided flooding costs	Megaliters of flood mitigation	\$	1,297.14	12.77	\$	16,561
Reduced eutrophication	Kilograms of Phosphorus	\$	10.00	854.70	\$	8,547
TOTAL					\$	44,242
Costs						
Capital Costs (annualized)	Capital costs	\$	7,000.00	1	\$	7,000
Annual operating costs	Capital costs	\$	140.00	1	\$	140
Opportunity costs	Acres of lost farmland	\$	60.00	80	\$	4,800
TOTAL					\$	11,940
ANNUAL BENEFIT	Section				\$	32,302
BENEFIT:COST	Ratio					371%

Alternative Land Use Services "Growing a Healthier Environment"

Nutrients diverted from watershed to biorefinery

Case Study: Virden, MB

Case Study: Virden, MB

Integrated Watershed Management Plan

- Conduct flood frequency analysis to determine probable runoff volumes, and
- Provide incentives to convert flood prone land from annual crop production to permanent cover
- Restore wetlands in the affected catchments,
- Encourage small water retention/storage projects in the target catchments.

PROVINCIAL GOVERNMENT

- Department of Agriculture (shared responsibility for ALUS)
- Department of Sustainable Development (shared responsibility for ALUS)
- Department of Municipal Government (Virden flood risk management)
- Department of Infrastructure (PTH#1 crossings).

LOCAL GOVERNMENT

- Town of Virden
- Rural Municipality of Wallace-Woodworth
- Upper Assiniboine Conservation District
- Manitoba Conservation Districts Association

 have the project's proponents identified key climate risks and potential impacts?

 Has the change in frequency of those impacts been estimated using the best available climate science? <u>Climateatlas.ca</u>

• And is the cost-benefit analysis robust within the projected range of key climate impacts?

Procurement

Insurability

Liability